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Abstract
A methodology was developed for computing the probability that the sensor dart for the
“Near Real-Time Site Characterization for Assured HDBT Defeat” Grand-Challenge
LDRD project will survive deployment over a forested region. The probability can be
decomposed into three approximately independent probabilities that account for forest
coverage, branch density and the physics of an impact between the dart and a tree branch.
The probability that a dart survives an impact with a tree branch was determined from the
deflection induced by the impact. If a dart that was deflected so that it impacted the
ground at an angle of attack exceeding a user-specified, threshold value, the dart was
assumed to not survive the impact with the branch; otherwise it was assumed to have
survived. A computer code was developed for calculating dart angle of attack at impact
with the ground and a Monte Carlo scheme was used to calculate the probability
distribution of a sensor dart surviving an impact with a branch as a function of branch
radius, length, and height from the ground. Both an early prototype design and the current
dart design were used in these studies. As a general rule of thumb, it we observed that for
reasonably generic trees and for a threshold angle of attack of 5° (which is conservative
for dart survival), the probability of reaching the ground with an angle of attack less than
the threshold is on the order of 30% for the prototype dart design and 60% for the current
dart design, though these numbers should be treated with some caution.
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An Analysis of the Survivability of Sensor
Darts in Impacts with Trees

1 Introduction
In October 2003 Sandia started the “Near Real-Time Site Characterization for Assured
HDBT Defeat” Grand-Challenge Laboratory-Directed Research and Development project
with the vision to perform research and development on the key technologies for an
active sensor system that will help assure the success of a nuclear earth-penetrating
weapon strike on an underground strategic target through rapid site characterization and
optimal aim-point selection. The objective of the characterization is to combine seismic
imaging and detection results with penetrability measurements to locate homogeneous
“soft spots” in the near surface of the site to improve the probability of weapon survival.

In the concept of operations a number of penetration probes and sensor darts are deployed
from the air at a hard and deeply buried target (HDBT) site. The probes penetrate as
deeply as possible and provide point penetrability measurements; they are subsequently
detonated as seismic sources. The sensor darts lodge near the ground surface and collect
the seismic signals; some also serve as communication relay nodes or as additional
seismic sources. The relay nodes collect global-positioning system (GPS) position data,
penetrability data, and seismic signals and transmit them via satellite or another overhead
asset to a remote site for processing and fusing with existing intelligence from the site.

A sensor dart body has been designed and field tested in helicopter drop tests at Tonopah
Test Range in both harder and softer targets. A typical dart design is shown in Figure 1.
A concern is the survivability of the sensor dart in impacts with trees. The purpose of the
study reported here is to assess the survivability of the sensor dart in such impacts.

Figure 1. Sensor Dart Body Design
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When the sensor dart is deployed over a forested region, some of the darts will impact
tree branches prior to reaching the ground. While some of these impacts may physically
damage the dart, others will simply perturb its trajectory or cause it to tumble. This latter
issue is important because a relatively small angle of attack at ground impact may be
sufficient to disable the dart. This report presents an analysis of the probability of
survival of the sensor dart, taking into account impacts with trees, concentrating on the
effect of glancing impacts that cause the dart to tumble.

The report is divided into several sections. Following this introduction, section 2
discusses the methodology for computing the probability of dart survival. Section 3
discusses available tools for determining the architecture of different kinds of trees.
Section 4 gives some estimates for the survivability of an early prototype dart design if it
hits a single branch assuming a range of tree characteristics. Section 5 gives some
estimates for the survivability of the current dart design if it hits a single branch assuming
a range of tree characteristics. Section 6 summarizes the report. The appendix consists of
a listing of a Fortran 95 computer code for computing the probability of surviving the
impact with a single tree branch, an important component of the calculation of the overall
dart survival probability.
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2 Calculation of the Total Survival Probability
When the sensor dart is deployed, two potential failure mechanisms are impact with a
tree prior to reaching the ground or impacting a boulder or other hard object on the
ground. This report addresses the tree-branch impact problem. Impact of the dart with a
tree branch can lead to a deployment failure either by structurally damaging the dart or by
imparting sufficient rotation so that it hits the ground with an excessive angle of attack
and in the process breaks up or is damaged.

The total probability of dart deployment failure due to impact with a tree can be
decomposed into three probabilities. The first is the probability canopyP of hitting the

canopy of a tree. For a dart coming down normal to the ground, the canopy is defined as
the total surface area of leaves and branches of the tree projected normal to the ground.
The second factor branchP is the probability that, having come down on top of a tree, the

dart will hit a branch in that tree (as opposed to the trunk, leaves, or small stems). The
final factor is the probability impactP that the dart will survive the impact with a branch.

Survival is based on the dart either not being damaged or not having an excessive rotation
at ground impact. To a reasonable approximation, these probabilities can be treated as
independent, in which case the probability that the dart will survive deployment is

( ) ( ) impactbranchcanopybranchcanopycanopysurvival PPPPPPP +−+−= 11 ,

or more simply,
( )impactbranchcanopysurvival PPPP −−= 11 . (1) 

The first probability canopyP is arguably the easiest to determine. This is nothing more than

the fraction of the total impact surface area that is covered by the tree canopy when
viewed from above (normal to the ground),

total canopy
canopy

total

A
P

A
= (2) 

where totalA is the total surface area of the impact region and total canopyA is the total area

covered by tree canopy. This can be assessed by aerial or satellite remote sensing in the
visible spectrum. Note that heavily forested areas, areas in which Pcanopy is near 1, are
unlikely target sites because earth penetrators, like the sensor darts, are subject to
deflection by impacts with trees.

The second term, branchP , is

branch
branch

canopy

A
P

A
= (3) 

where branchA is the total area of branches within a single tree canopy projected normal to

the ground and canopyA is the projected area of the canopy for that tree1. Strictly speaking,

this should be a probability density distribution and the calculation should be an integral

1 This area is given approximately by the area of a circle normal to the vertical with a diameter equal to the
widest point on the tree, including all leaves, branches, and stems.



- 11 -

over that distribution2. However, if the region of interest is covered by trees of largely the
same species and maturity, it may be sufficient to simply choose an average branch area
density and use Eq. (3) as an approximation. In either case, the practical difficulty is
computing the branch areal density. For deciduous trees, it may be possible to determine
this density during winter months using aerial or satellite remote sensing. Alternately, it
may be determined based on knowledge of the tree species and maturity using various
growth models (see section 3).

The final term, impactP , requires an analysis of the dynamics of the sensor dart during the

impact with a tree branch. This is the only part of the analysis that is dependent on the
specific characteristics of the sensor dart or requires any physics-based analysis. As with
the previous term, this is strictly speaking a probability distribution, not a single number.
However, as will be discussed in section 4, numerical experiments suggest that it may be
possible to assign a single value to this probability that is sufficient for most purposes.

We devote the remainder of this section to a discussion of a methodology for calculating
the single branch impact survivability probability impactP . For the purposes of this analysis,

the sensor dart is considered to be a rigid body of rotation and the tree branch is
considered to be a statically determinant, perfectly elastic beam. During an impact, the
dart causes the branch to bend and the resulting elastic restoring force generates an
impulse on the dart that changes the dart center of mass velocity and the angular velocity
around the center of mass. The main approximations in this methodology are that the dart
is treated as a non-deformable rigid body and aerodynamic forces are neglected. The rigid
body approximation is reasonable because impacts capable of deforming or damaging the
projectile are expected to induce a pitch and yaw to the rigid body that would result in
destruction at ground impact irrespective of damage done during the branch impact. The
neglect of aerodynamic forces is also considered acceptable given that any impact with a
tree will occur close to the ground.

Two coordinate systems are used in modeling the dynamics of the dart. The first is an
inertial, or laboratory, coordinate system fixed in space. The location of the origin and
orientation of the axes of this system are arbitrary so long as they are fixed in space. The
second coordinate system is the body coordinate system. The sensor dart is assumed to be
a body of revolution. The origin of the body coordinate system is fixed at the center of
mass of the dart with the positive z axis pointing toward the nose of the dart along its
centerline. The other two axes are perpendicular to the centerline, but otherwise their
orientation is arbitrary since the dart is a body of revolution.

We now derive the equations of motion for the sensor dart. The dart is a non-deformable
rigid body with moment of inertia I

t
given by

( )∫ −= kiikiik xxxdVI δρ 2 (4) 

 
2 The finite projected area of the dart can be neglected for trees that are of significant size compared to the
dart. A tree for which Acanopy is of comparable scale with the dart is unlikely to deflect the dart significantly.
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where ρ is the material density, ix is the ith material coordinate in the dart body coordinate

system, ikδ is the Kronecker delta function, and the integration is over the volume of the

dart3. The mass of the dart is µ .

The equations of motion of the center of mass of the dart are

cm
i

dr
F

dt
µ =∑

r r
, (5) 

where cmr
r

is the radius vector of the center of mass in the laboratory coordinate system

and iF
r

are the external forces acting on the dart during the time step. One of these forces

is gravity4, the other forces are those exerted by the branch on the dart.

The equations of rotational motion for the dart are given in the dart body coordinate
system by Euler’s equations [1]: 

 ( )x
x z y y z x

d
I I I

dt
τΩ + − Ω Ω = (6) 

 ( )y
y x z z x y

d
I I I

dt
τ

Ω
+ − Ω Ω = (7) 

 ( )z
z y x x y z

d
I I I

dt
τΩ + − Ω Ω = (8) 

where Ω
r

is the angular velocity of the dart in the dart body coordinate system, τr are the
external torques exerted on the dart due to the branch in the dart body coordinate system,
and xI , yI , and zI are the principal moments of inertia. Note that these principal

moments of inertia are assumed to be parallel to the x, y, and z axes respectively of the
dart-body coordinate system.

To calculate the torques τr in the dart body coordinate system, we begin with the torques
Τ
r

expressed in the laboratory coordinate system. Assume that the forces iF
r

are exerted

at points iR
r

on the surface of the dart where the vectors iR
r

are in the laboratory

coordinate system. Relative to the center of mass in the laboratory coordinate system, the
external torques on the dart are then

( )i cm iR r FΤ = − ×∑
r r rr

. (9) 

 The external torques τr in the dart body coordinate system are related to the torques Τ
r

expressed in the laboratory coordinate system by the transformation

Eτ = Τ
rr

(10)

3 The moment of inertia for the sensor dart will in general be calculated by the CAD package used in the
design of the dart.
4 However, as a practical matter, gravity can be neglected given the velocity of the dart and its proximity to
the ground during any branch impact.
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where the rotation tensor E is given by [2]

cos cos cos sin sin cos sin cos cos sin sin sin

sin cos cos sin cos sin sin cos cos cos cos sin

sin sin sin cos cos

E

ψ φ θ φ ψ ψ φ θ φ ψ ψ θ
ψ φ θ φ ψ ψ φ θ φ ψ ψ θ

θ φ θ φ θ

− + 
 = − − − +  − 

(11)

where φ , θ , and ψ are the Euler angles of the dart body coordinate system relative to
the laboratory coordinate system. An equivalent rotation matrix can be written in terms of
the direction cosines between the two coordinate systems. Note that the calculation of the
torque can also be done directly in the body coordinate system, thereby eliminating the
need for the rotation in Eq. (10), though it may in this case instead be necessary to
transform some description of the branch from the laboratory to body coordinate systems.

The time rate of change of the angular velocity of the sensor dart in the body coordinate
system can be expressed in terms of the time rate of change of the Euler angles in the
laboratory coordinate system, thereby producing a set of differential equations describing
the dart rotation in the laboratory system. However, this requires a complicated inversion
of three simultaneous differential equations in order to express the rate of change of the
Euler angles in terms of the body angular velocity vector. A less complex solution can be
obtained by noting that over small time intervals, the impact induced torques produce an
infinitesimal rotation of the dart around the instantaneous dart angular velocity vector Ω

r
.

This has the effect of taking a point or
r

on the dart in the body coordinate system into a

new point nr
r

where [3]  

 ( )[ ] ( )ˆ ˆ ˆcos 1 cos sin .n o o or r n n r n rφ φ ϕ= + ⋅ − + ×r r r r
(12)

The vector n̂ is a unit vector pointing along the angular velocity vector in the body
coordinate system,

ˆ ,
d

n
dt

φΩ =
r

(13)

and the valueφ in equation (12) is equal to
d

t
dt

φ ⋅∆ . These new coordinates are then

rotated back into the laboratory coordinate system using the transpose of Eq. (11) to give
the orientation of the dart in the laboratory coordinate system at the end of this small time
step.

This suggests a numerical scheme for integrating the equations of motion of the dart
during the impact with a branch. We integrate the equations over small time steps t∆ . At
the beginning of a time step, we transform the coordinates of the tree and the angular
velocity vector from the laboratory coordinate system to the body coordinate system
using the rotation matrix in Eq. (11) or its equivalent in terms of direction cosines. We
then calculate the force on the sensor dart due to the tree using elastic beam theory in the
body coordinate system. Next we calculate the infinitesimal rotation of the principal axes
of the sensor dart in the body coordinate system due to the resulting torques on the dart.
Upon rotation back into the laboratory coordinate system, these axes represent the new
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orientation of the body coordinate system relative to the laboratory coordinate system
from which new Euler angles (or equivalently, direction cosines) can be calculated. The
center of mass motion of the dart is calculated by integrating Eq. (5) over the time step.
A second-order accurate numerical integration is used for both the rotations and center of
mass motion.

This method for calculating the sensor dart motion is exact within the approximation
introduced by the numerical quadrature. Numerical experiments suggest that a few
hundred time steps are sufficient over the duration of the dart/branch impact to achieve
good numerical accuracy. This implies time steps on the order of tens of microseconds.

A more difficult problem is calculating the dynamics of the tree due to the impact with
the dart. An exact treatment of this problem would require solving the differential
equations for the elastic motion of the tree during the impact. These equations include the
motion of elastic waves which travel at approximately 1 km/s along the axis of the tree
branch. A numerical solution of these elastic equations requires a time step minimally
one order of magnitude smaller than that required for a very fine resolution of the dart
motion. While this is not an unreasonable computational burden for a single impact
calculation, the calculation of the impact probability impactP can require hundreds of

thousands of Monte Carlo dart/branch calculations for different impact initial conditions.
This makes it desirable to use the largest time step possible in order to make the problem
computationally feasible. In addition, a detailed calculation of the tree dynamics is
probably not necessary in order to estimate the effect of an impact on the dart given the
uncertainties associated with tree architecture (see the next section), provided that the
approximate dart torque and center of mass forces can be calculated to a reasonable
approximation.

To that end, the scheme used in this analysis is as follows. The unbent tree branch is
defined by the location of its two endpoints. The end where the branch connects to the
trunk is fixed in space while the other end is allowed to move. At the beginning of a
simulation, the dart is positioned with its axis aligned vertically and the nose just
touching some portion of a tree branch. The calculation is done such that the deflection of
the branch will always occur in the same half-space relative to the axis of the dart. This
simply imposes the physical constraint that the branch always deflects to one side or the
other of the dart. During a time step, the dart will move some distance. If it is in contact
with the branch, this will result in some small additional deflection of the branch.
Knowing the contact point between the branch and the dart at the end of this time step,
and hence the deflection of the branch, the force on the dart at the beginning of the next
time step can be calculated using elastic beam theory [4] as

3

3

L

I
F tδξ

= , (14)

where ξ is the modulus of elasticity (Young’s modulus) of the tree, tI is the moment of

inertia of the tree branch cross-section (assumed here to be a circle of some radius),δ is
the deflection of the branch at the impact point, and L is the distance from the tree trunk
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to the impact point. Note that this is a statically determinant solution that neglects all
momentum effects.

The difficulty is that in the absence of solving the equations for the true motion of the
branch, the contact point between the dart and the branch is not known. However, it can
be estimated using the heuristic that the branch will be in contact with the point on the
dart where the deflection is the smallest. This is consistent with a minimum potential
energy solution for beam deflection, but it assumes the branch can move fast enough to
always satisfy this requirement. To compute the point on the dart where the deflection
will be smallest, multiple points along the dart from the nose to the tail are sampled. For
each of these points, the deflection of the tree is calculated such that the tree is always on
the same side of the dart. This calculation is done assuming the correct exterior geometry
of the dart and modeling the tree as a cylinder of prescribed length and radius fixed at the
end where the branch intersects the trunk of the tree. The point where the minimum
deflection occurs is assumed to be the impact point.

To calculate the impact probability impactP , a Monte Carlo approach is used. Ranges of

heights, radius, and lengths are defined for branches representative of a particular species
of tree. A specific branch height, radius, and impact point (less than or equal to the
branch length) are chosen at random from within these ranges. A calculation of the
trajectory of the sensor dart is then performed. If the dart experiences a rotation that
exceeds some threshold it is assumed to not have survived the impact. Otherwise it will
be assumed to have survived. This is repeated totalN times, where totalN is usually on the

order of 50,000 to 100,000 with new randomly chosen impact parameters for each
calculation. The results of these calculations can then be used to define a probability
distribution in terms of the branch height, radius, and length. Alternately, a single average
probability of survival of the dart for these conditions can be defined by

survive
impact

total

N
P

N
= (15)

where surviveN is the total number of calculations where the dart impacted the ground with

an angle of attack less than or equal to the maximum survivable angle. A computer code
written in Fortran 95 for calculating the average probability is given in the appendix.

Note that in some cases, the dart could impact more than one branch during its descent
through a tree. The computer code given in the appendix and the analyses in sections 4
and 5 neglect this. The modification to the computer code to include multiple branch
impacts is relatively trivial. However, it is probably not necessary in general to include
the effect of multiple branch impacts. As discussed in sections 4 and 5, numerical
experiments suggest that a single impact with a larger branch generally induces sufficient
tumbling of the dart so that it will not survive impact. On the other hand, impact with
very small branches generally has minimal effect on the dart, making multiple such
impacts of little concern and neglecting them is not believed to represent a significant
error.
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3 Tree Architecture and Predictive Tools
The calculation of both branchP and impactP require some knowledge of the architecture of the

trees present in the impact zone. In the case of branchP , this information is important in

determining either the probability distribution of or an average for the size and density of
branches in the trees in order to determine the total projected branch area. In the case
of impactP , it is necessary to know something of the probability distribution for the height

of the trees in the impact region, their branch radii, and branch lengths. This information
is then used in the computer code discussed in the appendix to compute the probability of
survival of the dart during a branch impact using the methodology outlined in the
previous section.

Ideally, the architecture of the trees requires either direct sampling via remote sensing or
on-the-ground inspection or knowledge of the general characteristics of similar trees
growing under similar climatic and soil conditions. A detailed discussion of this topic is
beyond the scope of this paper or the competence of the author. However, it may be
instructive to offer some general comments about tree architecture and review some tools
that are available for modeling tree characteristics.

The maturation of a tree involves two growth processes: the forming of shoots of the
crown and the roots (primary growth) and expansion of the stem and root diameter
(secondary growth) [5]. A combination of these processes, following an architectural
model common to each species and influenced by environmental factors (climate and soil
in particular), gives each species a characteristic aerial and subsurface structure and form.
Broadly speaking, trees have one of two forms. Excurrent tree forms, typical of northern
conifers and a few deciduous trees such as sweetgum and tuliptree, grow in a conical
form that is the result of selection pressures of snow, ice, and wind. These trees tend to
have a single trunk with smaller branches growing radially out from it. However, not all
conifers exhibit this growth pattern; some change to a more rounded and spreading form
related to climate.

The second common form is called decurrent or deliquescent. These trees have lateral
branches that grow nearly as fast as or faster than the trunk. The trunk may fork
repeatedly, giving rise to a spreading form. Examples of such trees are elms, oaks,
maples, and other species that grow in less harsh environments than is typical of those
where excurrent trees are usually found.

Within these two broad categories, it is possible to reduce the diversity of tree forms to
23 architectural models. However, a given species may be intermediate between two
models or share features of several models. As discussed in Barnes, et al., “[c]riteria for
identifying the models included whether shoot extension is rhythmic or continuous,
whether the tree is unbranched (as in some palms) or branched, whether or not branch
differentiation is orthotropic (erect) or plagiotropic (horizontal), and whether flowering is
terminal or lateral”. Good review papers discussing tree architecture are those of
Tomlinson [6] and Barthelemy, et al. [7]. 
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An important characteristic of tree architecture is reiteration. When a tree is damaged and
new shoots arise, these shoots repeat the original architectural pattern of the species. A
common example of this occurs when a trunk is pruned or cut and shoots looking like
new versions of the same kind of tree grow out of the old trunk. Reiteration can lead to
the development of multiple branches and trunks, even in excurrent trees such as
conifers.

The canopy of a tree consists of the branches, stems, and leaves. More generally, it refers
to the sum of all of the individual canopies of what can be multiple trees and shrubs at
several layers in the undercanopy. Note that the presence of multiple layers within a
canopy could complicate the analysis of the dart survivability since in some ecosystems
there may be layers of trees of different species with very different architectural
characteristics. In such cases, it will probably be necessary to take into account the
possibility of impact with more than one tree in the calculation of the impact
probability impactP .

Despite being able to reduce tree architectures into only 23 models, the diversity of tree
species is still dizzying5. Adding to this is the range of variability in the size of trees. In
Missouri, tulip poplar in the Bootheel region can reach over 50 meters, while the shrub-
like wild plum tops out at around 4 meters in a north-central Missouri fencerow [8]. In
Ontario, canopy trees range from 20 to 25 meters in height. Some giants may reach
heights of 25 to 30 meters or more. Beneath the canopy there is another layer of
vegetation, call the subcanopy or understory. Trees forming in this layer typically reach
heights of 7 to 10 meters. Beneath this layer is the shrub layer, formed by shrubby species
such as viburnums, which grow in heights to perhaps 3 meters [9]. Even more
impressive, in tropical regions the trees in the upper level of the canopy can reach to
heights exceeding 65 meters with an understory that stretches for vast distances [10]. 

Interestingly, even in heavily forested regions, trees rarely form an unbroken canopy over
large areas. Even in tropical rainforests, branches will overlap but rarely interlock or even
touch. Instead they are separated by a few feet. It is not known why this happens, but one
theory is that it might serve as protection from infestations from tree-eating caterpillars
and tree diseases [10]. This is of obvious importance to the sensor dart survivability since
it implies than even in densely forested regions, there will be gaps between trees where a
dart is unlikely to impact a branch. Similarly, even within the canopy of a single tree, the
trunk and major branches often occlude only a fraction of the total projected surface area
of the tree. For example, though constituting an unusually sparse tree, the total projected
surface area of the stems and branches in walnut trees amounts to only approximately 1/5
of the projected canopy surface area [11]. This means that ~ 0.2branchP for walnut trees.

In this case, even if both canopyP and impactP were equal to one (implying 100% of the

ground was covered by overlapping trees and any impact with a branch would disable the
sensor dart), the probability of the dart surviving to impact would still be 80%. However,

5 A sense of this diversity can be gained by looking at the MUC Dictionary at
http://ael.physic.ut.ee/kaariku/mucdictionary.htm (11 April 2005) or the CWHR Classification System at
http://frap.cdf.ca.gov/projects/frap_veg_frames/classification.html (11 April 2005).
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this is unquestionably an upper bound; most species of trees exhibit a much higher
projected branch surface area. In the case of some conifers, eyeball estimates suggest this
number could reach 80%, meaning ~ 0.8branchP , implying a rather low probability of the

dart surviving passage through such a tree.

Though cursory, this short discussion of tree architecture illustrates the immense diversity
of trees and the impossibility of drawing general conclusions about the probability of dart
survival without reference to the nature of the trees growing in a specific impact zone. It
will be essential to characterize the nature of the trees in each impact zone in order to
derive any meaningful information about canopyP , branchP , or impactP .

Some remote sensing techniques exist that can be employed to characterize tree
architecture in a given region. For example, total canopy coverage for use in calculating

canopyP can be obtained by aerial or satellite remote sensing in the visible spectrum. A

technique discussed in the open literature for measuring canopy height and foliage
density, of value in determining both branchP and impactP , is aerial pulsed infrared laser

profiling (lidar) [12, 13]. Other, more sophisticated, techniques no doubt exist.

Computer modeling is another tool that can be used to estimate branchP and impactP . There

has been extensive work done in recent years to develop computer models for predicting
the growth and architecture of trees based on species and growing conditions. We will
briefly describe some of these models; however, this discussion is by no means
exhaustive. We begin by discussing models that incorporate biological information to
predict growth or structure.

An early model for describing tree architecture of densely wooded conifer forests was
developed by Sandia/California in the 1980s and documented in a laboratory report [14].
This model used algebraic equations to compute canopy coverage, crown height, trunk
and branch diameters, and tree density based on soil and rainfall parameters, forest
density parameters, and the age of the forest.

The FORECAST model is an “ecosystem-based, stand-level, forest growth simulator”6.
This model incorporates information on decomposition, nutrient cycling, light
competition, and other ecosystem properties to simulate forest growth and ecosystem
dynamics. This model would appear to be most useful in estimating the total canopy
cover over a conifer forest and may also be useful in inferring information about branch
density and size within the trees in that forest.

The LIGNUM model is a “functional-structural model that represents a tree using four
modeling units which closely resemble the real structure of trees: tree segments, tree
axes, branching points and buds. Metabolic processes are explicitly related to the
structural units in which they take place” [15]. This model has been successfully applied
to broad-leaf, deciduous trees.

6 FORECAST was developed and is available from Clive Welham, Brad Seely, and Hamish Kimmins,
Forest Ecosystem Management Simulation Group, University of British Columbia, Vancouver, BC.



- 19 -

So-called pipe model theory can be used to predict the height growth of trees [16] and the
branch distribution [17] based on a metabolic model of height growth and site index
derived from a parameterization of the annual carbon balance of a tree.

In addition to these biologically based models, there has been extensive development of
“topological” models that are not based on biological, first-principle, growth models but
have nonetheless been successfully applied to modeling tree architecture. These models
may also be of value in estimating branchP and impactP . However, the non-biological nature

of the model will presumably limit their utility to previously well-characterized species.
We will conclude this section with a brief overview of some of these models.

Multiscale Tree Graph (MTG) is a topological model suitable for representing tree
topology with respect to scale and time. It is capable of expressing succession and
branching relationships between plant components [18, 19, 20]. 

L-systems are another non-growth based model capable of representing tree architecture.
The approach involves several steps:

1. “Individual-based simulation of a plant ecosystem, using coarse representations of
individual plants. This step establishes positions and general characteristics of the
plants, such as their height, diameter, and the overall shape of tree crowns.

2. Generation of detailed plant models that satisfy the characteristics determined in
the previous step.

3. Realistic visualization of the ecosystem, using detailed plant models substituted
for their coarse counterparts.”

The resulting “formalism provides a tool for specifying individual-based ecosystem
models and simulating their development over time” [21, 22]. 

The AMPmod model describes tree architecture using both topological and geometric
information and “is based on the use of a multiscape model of plant topology—called
multiscale tree graphs—which is extended to include geometry.” The “method … does
not depend on the plant species or on the geometric model used to describe the plant
components” [23, 24]. It has been successfully applied to model apple and walnut trees.
Two additional generic models (largely computer-graphics oriented) are those by Yan, et
al. [25], and Bloomenthal [26]. 
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4 Calculations of Pimpact for a Prototype Dart Design
As discussed in section 3, the diversity of tree architecture makes it impossible to draw
detailed conclusions about the survivability of the sensor dart without reference to the
characteristics of a specific impact site. In particular, estimates of canopyP and branchP will

inevitably be very site-specific. However, we can make some general comments
regarding impactP , the probability of survival of an impact with a single branch, by

considering calculations of impactP for a range of elastic moduli for green wood.

In this section we consider calculations of the probability Pimpact that a prototype sensor
dart will reach the ground with a survivable angle of attack. The calculations were
conducted with the computer code described in section 2 and given in the appendix. The
geometry, mass, and moment of inertia of the dart were supplied by Robert T. Gilchrist.

4.1 Modeling Assumptions
We assumed the dart was delivered with its design velocity of 75 m/s normal to the
ground. Note that for this study the dart terrabrakes were assumed to be closed during the
impact with the branch.

We assumed the threshold survival angle of attack for the prototype sensor dart is 5°.
This value is conservative value for dart survival: in drop tests at Tonopah Test Range the
dart impacted the ground at angles of attack significantly larger than this and the dart
embedded in the ground and its internal components survived [27].

We assumed a uniform probability distribution for each of the various branch parameters.
The probability of survival was calculated using the code given in the appendix, which
permits the height, diameter, and distance from the trunk to the impact point on the
branch to be varied within some specified range. A Monte Carlo calculation was then
performed, in each iteration of which a specific branch height, a diameter, and a distance
from the trunk to the impact point were randomly selected. The average single branch
impact survival probability impactP is calculated using Eq. (15). 

We assumed there is no correlation between the radius of the branch and the distance of
the impact point from the branch. In general, the greater the distance between the trunk
and the impact point, the smaller the branch radius will be.

Finally, we assumed there is no correlation between the branch height and the branch
radius. In general, branches at a greater height will tend to have a smaller radius at a
given impact distance from the trunk than branches closer to the ground. Thus the values
calculated for Pimpact are likely under-estimates of the probabilities.

4.2 Moduli of Elasticity for Green Woods
Three sets of calculations were conducted. Each set used a wood with a different modulus
of elasticity: one with a low modulus, one with a high modulus, and one with an
intermediate modulus (Table 1).
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The modulus of elasticity of wood varies with a variety of factors, including growing
conditions, environmental and insect damage, age, and moisture content. For example,
the modulus of elasticity for Scots pine (Pinus sylvestris L.) was approximately four
times greater for trees 25 years old than for trees 7 years old and the modulus of elasticity
varied significantly for moisture contents less than 30% [28]. For this study we use the
properties of clear green wood specimens, taken from Green, et al. [29].

For a wood with a low modulus of elasticity, we used ceiba (Ceiba pentandra), also
known as the silk-cotton tree and the kapok tree. Ceiba is distributed worldwide in the
tropics. It is found from the Tropic of Cancer in Mexico southward through Central
America to Columbia, Venezuela, Ecuador, and Brazil; in the Malay Peninsula; and in
West Africa. The wood is used commercially for plywood, packaging, light construction,
and pulp and paper products. The green wood has a modulus of elasticity of 2.80 GPa
(moisture content of 73%) [29, 30, 32, 33].

Table 1. Moduli of Elasticity for Green Woods

Wood
Modulus of Elasticity

(Green Wood) [29]
Ceiba (Ceiba pentandra) 2.80 GPa

White Oak (Quercus alba) 8.60 GPa
Kaneelhart (Licaria spp.) 26.3 GPa

For a wood with a high modulus of elasticity, we used kaneelhart (Licaria spp.), also
known as the brown silverballi. Kaneelhart is found mostly in the Guianas. The wood is
used commercially for furniture, boat building, heavy construction, and parquet flooring.
The green wood has a modulus of elasticity of 26.3 GPa (at a moisture content of 73%)
[29, 30, 31].

For a wood with an intermediate modulus of elasticity, we used white oak (Quercus
alba), also known as American white oak and Arizona oak. White oak is widely
distributed throughout the United States. The wood is used commercially for ships,
railroad ties, timber bridges, fuel wood, flooring, furniture, veneer, plywood, kegs and
casks, pallets, caskets, boxes, and paneling. The green wood has a modulus of elasticity
of 8.60 GPa (at a moisture content of 73%) [29, 34].

4.3 Probability Convergence Study
To verify the convergence of the probability calculations, we varied the number of
calculations per bin, Nc, from 100 to 1000 for the average probability of survival. 62,500
Monte Carlo samples were sufficient to achieve numerical convergence (Table 2).
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Table 2. Convergence of the Average Survival Probability Pimpact with the Number of
Calculations per Bin, Nc , for the Prototype Sensor Dart Design

Average Survival Probability

Nc Ceiba White Oak Kaneelhart
100 0.5025 0.4140 0.3406

200 0.4999 0.4124 0.3415

250 0.4998 0.4126 0.3420

300 0.4988 0.4107 0.3405

400 0.5012 0.4137 0.3439

500 0.4992 0.4121 0.3418

1000 0.5002 0.4132 0.3421

4.4 Survival Probability as a Function of Branch Impact
Location

First we consider the sensitivity of the average impact survival probability to how close
the impact point on a branch is to the trunk of a tree7. In these calculations, the tree
branch radius varied randomly between 0.5 cm and 10 cm and the height of the tree
varied randomly between 1 m and 30 m (approximately 100 ft). The distance between the
trunk and the impact point was constrained to ranges of 25 cm. The calculated average
impact survivability probabilities are plotted in Figure 2 and values are given in Table 3.
Recall that the survival probability given here is only impactP ; it is not the overall survival

probability for the dart deployed over a forest. Calculation of the overall survival
probability requires knowledge of all three probabilities in Eq. (1). 

The survival probability decreases as the impact point gets closer to the trunk for each of
the tree species. The physical explanation is obvious: the closer to the trunk the impact
occurs, the stiffer the branch will be. Note that the sensor dart radius at its widest point is
14 cm (5.5 inches). An impact closer than this distance to the trunk would involve
actually hitting the trunk, which would in general be unsurvivable for most trees. Not
surprisingly, the probability of survival varies with the elastic modulus of the wood: The
larger the elastic modulus of the wood is, the lower the average survival probability.

7 Note that the distance between the trunk and the impact point is statistically related to the length of the
branch since distances within some range along a particular branch are sampled.
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Figure 2. Average Survival Probability, Pimpact, for a Prototype Dart Design as a
Function of Impact Location Measured from the Tree Trunk, l

Table 3. Average Survival Probability Pimpact for the Prototype Dart Design as a
Function of Impact Location Measured from the Tree Trunk, l

Pimpact

l Range (cm) Ceiba White Oak Kaneelhart
25.0 – 50.0 0.244 ± 0.002 0.210 ± 0.002 0.184 ± 0.002
50.0 – 75.0 0.316 0.266 0.226
75.0 – 100.0 0.378 0.312 0.263

100.0 – 125.0 0.433 0.356 0.295
125.0 – 150.0 0.485 0.396 0.328
150.0 – 175.0 0.532 0.434 0.356
175.0 – 200.0 0.574 0.468 0.384
200.0 – 225.0 0.613 0.502 0.411
225.0 – 250.0 0.651 0.534 0.436
250.0 – 275.0 0.686 0.564 0.460
275.0 – 300.0 0.719 0.591 0.484
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4.5 Survival Probability as a Function of Branch Radius
Next we consider the sensitivity of the branch impact survival probability to the radius of
the branch. In these calculations, the distance of the impact point from the trunk varied
randomly between 25 cm and 300 cm and the height of the tree varied randomly between
30 cm and 30 m (approximately 100 ft). The radius of the branch was constrained to
relatively narrow ranges of 0.5 cm. The calculated average impact survivability
probabilities are plotted in Figure 3 and values are given in Table 4. 

The survival probability decreases rapidly as the branch radius increases (Figure 3 and
Table 4). This is a consequence of the fact that the elastic restoring force of the branch is
proportional to the area moment of inertia of the branch which in turn is proportional to
the fourth power of the radius of the branch. As before, the higher the elastic modulus of
the wood is, the lower the probability of survival.

4.6 Survival Probability as a Function of Branch Height
Finally, we consider the sensitivity of the average impact survival probability to the
height of the branch. In these calculations, the distance of impact point from the trunk
varied randomly between 25 cm and 300 cm and the radius of the branch varied
randomly between 0.5 cm and 10 cm, and constrained the height of the branch to
relatively narrow ranges (usually 100 cm). The calculated average impact survivability
probabilities are plotted in Figure 4 and values are given in Table 5. 

What is interesting here is that the survival probability drops off sharply for branches
higher than 3 m, but beyond that there is only a very gradual decline (Figure 4 and Table
5). What this reflects is that below a certain distance the time between the branch impact
and the ground impact is too small for the spin imparted to the dart to result in a
significant angle of attack. Above a certain distance, however, there is sufficient time for
this excessive angle of attack to manifest itself.
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Figure 3. Average Survival Probability, Pimpact, for a Prototype Dart Design as a
Function of Branch Radius, r

Table 4. Average Survival Probability, Pimpact, as for a Prototype Dart Design as a
Function of Branch Radius, r

Pimpact

r Range (cm) Ceiba White Oak Kaneelhart
0.5 – 1.0 0.980 ± 0.002 0.961 ± 0.002 0.933 ± 0.002
1.0 – 1.5 0.939 0.899 0.839
1.5 – 2.0 0.890 0.824 0.730
2.0 – 2.5 0.833 0.741 0.612
2.5 – 3.0 0.771 0.653 0.484
3.0 – 3.5 0.705 0.559 0.368
3.5 – 4.0 0.637 0.461 0.282
4.0 – 4.5 0.566 0.374 0.218
4.5 – 5.0 0.493 0.305 0.175
5.0 – 5.5 0.421 0.249 0.146
5.5 – 6.0 0.360 0.207 0.126
6.0 – 6.5 0.308 0.176 0.111
6.5 – 7.0 0.264 0.153 0.100
7.0 – 7.5 0.228 0.135 0.091
7.5 – 8.0 0.199 0.122 0.084
8.0 – 8.5 0.177 0.111 0.079
8.5 – 9.0 0.158 0.102 0.074
9.0 – 9.5 0.143 0.095 0.071
9.5 – 10.0 0.131 0.089 0.068
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Figure 4. Average Survival Probability, Pimpact, for a Prototype Dart Design as a
Function of Branch Height, h

4.7 Estimate of the Overall Branch-Impact Survival Probability
In general, the single-branch impact probability at a site will depend on the species and
growth history of the tree stand. However it is interesting to note that if the branch length
varies randomly between 25 cm and 300 cm, the branch radius varies randomly between
0.5 cm and 10 cm, and the branch height varies randomly between 30 cm and 30 m, the
average single-branch impact survival probability Pimpact ranges from 0.342 to 0.500 as
the elastic modulus decreases (Table 6). It is therefore tempting to conclude that as a
general rule of thumb, the probability of surviving the impact with a generic tree branch
is on the order of 0.4. However, this number should be used with some caution.

4.8 Estimate of the Overall Site Survival Probability
To estimate the probability of a dart surviving deployment at a forested site, we need the
probability of impacting a tree canopy, Pcanopy, and the probability of impacting a branch,
Pbranch. Pcanopy can be determined from the projected area of the canopy. For an estimate,
we can use the conservative value Pcanopy = 1, i.e., dense forest.

As noted in section 2, the probability of impacting a branch, Pbranch, is difficult to
determine. It depends on the species of tree, the maturity of the tree, the growing
conditions for the region (climate and soil), and other factors. For example, Pbranch has
been determined be approximately 0.2 for some walnut trees, but can be much larger,
especially for other species of trees. Pbranch can be estimated using remote sensing or
using tree growth models (section 3). For an estimate, we use the conservative value
Pbranch = 0.5, i.e., dense branches.
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Table 5. Survival Probability, Pimpact, for a Prototype Dart Design as a Function of
Branch Height, h

Pimpact

h Range (cm) Ceiba White Oak Kaneelhart
30.0 – 100.0 0.886 ± 0.002 0.824 ± 0.002 0.742 ± 0.002

100.0 – 200.0 0.745 0.633 0.522
200.0 – 300.0 0.668 0.553 0.451
300.0 – 400.0 0.623 0.511 0.417
400.0 – 500.0 0.592 0.484 0.396
500.0 – 600.0 0.569 0.464 0.381
600.0 – 700.0 0.552 0.448 0.368
700.0 – 800.0 0.536 0.436 0.358
800.0 – 900.0 0.523 0.425 0.349
900.0 – 1000.0 0.511 0.417 0.343

1000.0 – 1100.0 0.501 0.409 0.336
1100.0 – 1200.0 0.492 0.402 0.330
1200.0 – 1300.0 0.484 0.397 0.325
1300.0 – 1400.0 0.478 0.391 0.320
1400.0 – 1500.0 0.471 0.386 0.316
1500.0 – 1600.0 0.465 0.382 0.312
1600.0 – 1700.0 0.460 0.377 0.310
1700.0 – 1800.0 0.454 0.373 0.306
1800.0 – 1900.0 0.450 0.369 0.303
1900.0 – 2000.0 0.445 0.365 0.300
2000.0 – 2100.0 0.440 0.362 0.298
2100.0 – 2200.0 0.437 0.359 0.295
2200.0 – 2300.0 0.434 0.355 0.293
2300.0 – 2400.0 0.430 0.352 0.291
2400.0 – 2500.0 0.427 0.350 0.290
2500.0 – 2600.0 0.424 0.348 0.288
2600.0 – 2700.0 0.420 0.346 0.286
2700.0 – 2800.0 0.418 0.343 0.284
2800.0 – 2900.0 0.415 0.341 0.283
2900.0 – 3000.0 0.413 0.339 0.281

Table 6. Average Branch-Impact Survival Probability, Pimpact, Over All Impact
Conditions and Estimated Survival Probability, Psurvival, for a Prototype Dart Design

Ceiba White Oak Kaneelhart
Pimpact 0.500 ± 0.002 0.413 ± 0.002 0.342 ± 0.002

Psurvival 0.750 0.706 0.671
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Then using Eq. (1),

( ) ( ) 70.04.015.01111 =−××−≈−−= impactbranchcanopy PPPP .

Therefore, under fairly conservative assumptions, more than two thirds of the darts
deployed at a heavily forested site may reach the ground with a sufficiently small angle
of attack to be able to embed there. Estimates of the overall survival probabilities for each
of the woods are given in Table 6. 
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5 Calculations of Pimpact for the Current Dart Design
We repeated the study discussed in section 4 for the current sensor dart design (Figure 1).
As discussed in section 4, the diversity of tree architecture makes it impossible to draw
detailed conclusions about the survivability of the sensor dart without reference to the
characteristics of a particular target site, but we can draw some general conclusions
regarding the probability of survival of an impact with a single branch, impactP , by

considering calculations of impactP for a range of elastic moduli for green wood.

As in the previous study, the dart was assumed to survive impact if it reaches the ground
with an angle of attack of less than a threshold value. The geometry, mass, and moment
of inertia of the dart were supplied by Joseph E. Lucero. The study was conducted for the
same three woods as in the previous study: ceiba, white oak, and kaneelhart (Table 1).

5.1 Modeling Assumptions
We assumed the dart was delivered with its design velocity of 75 m/s normal to the
ground. Note also that for this study the dart terrabrakes were open during the impact
with the branch.

As in the previous study, we assumed the threshold survival angle of attack for the
prototype sensor dart is 5°, which is conservative value for dart survival: in drop tests at
Tonopah Test Range darts impacted the ground at angles of attack significantly larger
than this and they embedded in the ground and their internal components survived [27].

As in the previous study, we assumed a uniform probability distribution for each of the
various branch parameters. The probability of survival was calculated using the code
given in the appendix, which permits the height, diameter, and distance from the trunk to
the impact point on the branch to be varied within some specified range. A Monte Carlo
calculation was then performed, in each iteration of which a specific branch height, a
diameter, and a distance from the trunk to the impact point were randomly selected. The
average single branch impact survival probability impactP is calculated using Eq. (15). 

As in the previous study, we assumed there is no correlation between the radius of the
branch and the distance of the impact point from the branch. In general, the greater the
distance between the trunk and the impact point, the smaller the branch radius will be.

Finally, as in the previous study, we assumed there is no correlation between the branch
height and the branch radius. In general, branches at a greater height will tend to have a
smaller radius at a given impact distance from the trunk than branches closer to the
ground. Thus the values calculated for Pimpact are likely under-estimates of the
probabilities.

5.2 Probability Convergence Study
To verify the convergence of the probability calculations, we varied the number of
calculations per bin, Nc, from 100 to 1000 for the average probability of survival. A value
Nc = 250 (corresponding to 62,500 Monte Carlo samples) was sufficient to achieve
numerical convergence (Table 7).
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Table 7. Convergence of the Average Survival Probability, Pimpact, for the Current
Sensor Dart Design with the Number of Calculations per Bin, Nc

Average Survival Probability

Nc Ceiba White Oak Kaneelhart
100 0.7160 0.6195 0.5268

200 0.7162 0.6186 0.5250

250 0.7177 0.6213 0.5271

300 0.7175 0.6190 0.5252

400 0.7183 0.6206 0.5272

500 0.7154 0.6184 0.5243

1000 0.7167 0.6198 0.5257

5.3 Angle of Attack Histories
Some typical angle-of-attack histories are shown in Figure 5. A dart trajectory calculation
was terminated if the angle of attack reached the failure criterion, 5°. Darts that survive
the impact with the tree branch, that is, whose angles of attack when they reached the
ground were less than 5°, have angle-of-attack histories that are horizontal lines or lines
with small slope. Only one of the darts in Figure 5, Dart 10, survived; most did not
survive, that is, their angle of attack reached 5° before they reached the ground. The early
history of the angle of attack indicates that the interaction of the dart with the branch can
be complex (for example, the angle-of-attack history for Darts 1 and 11). Trajectories for
the darts whose angle-of-attack histories are given in Figure 5 are shown in Figure 6; the
Xs indicate the darts that did not survive. The color coding of the darts in Figure 5 and
Figure 6 is consistent.
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Figure 5. Angle-of-Attack Histories for Several Sensor Darts

Figure 6. Trajectories for Several Sensor Darts
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5.4 Survival Probability as a Function of Branch Impact
Location

First we consider the sensitivity of the survival probability to how close the impact point
on a branch is to the trunk of a tree8. In these calculations, the radius of the tree branch
varied randomly between 0.5 cm and 10 cm and the height of the tree varied randomly
between 30 cm and 30 m (approximately 100 ft). The distance between the trunk and the
impact point was constrained to relatively narrow ranges of 25 cm or less. The calculated
average impact survivability probabilities plotted in Figure 7 and the values are given in
Table 8. Recall that the survival probability given here is only impactP ; it is not the overall

survival probability for the dart deployed over a forest.

The survival probability decreases as the impact point gets closer to the trunk for each of
the tree species. The physical explanation is obvious: the closer to the trunk the impact
occurs, the stiffer the branch will be. Note that the radius of the extended terrabrakes is
26 cm (10.5 inches); an impact closer than this distance to the trunk would involve
actually hitting the trunk, which would in general be unsurvivable for most trees. Not
surprisingly, the probability of survival varies with the elastic modulus of the wood: The
larger the elastic modulus of the wood is, the lower the average survival probability.

8 The distance between the trunk and the impact point is statistically related to the length of the branch
since distances within some range along a particular branch are sampled.
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Figure 7. Average Survival Probability, Pimpact, for the Current Dart Design as a
Function of Impact Location Measured from the Tree Trunk, l

Table 8. Average Survival Probability, Pimpact, for the Current Dart Design as a
Function of Impact Location Measured from the Tree Trunk, l

Pimpact

l Range (cm) Ceiba White Oak Kaneelhart
25.0 – 50.0 0.350 ± 0.002 0.287 ± 0.002 0.236 ± 0.002
50.0 – 75.0 0.480 0.391 0.320
75.0 – 100.0 0.578 0.475 0.387

100.0 – 125.0 0.658 0.544 0.447
125.0 – 150.0 0.725 0.606 0.499
150.0 – 175.0 0.781 0.658 0.546
175.0 – 200.0 0.827 0.707 0.589
200.0 – 225.0 0.865 0.749 0.629
225.0 – 250.0 0.895 0.786 0.664
250.0 – 275.0 0.919 0.818 0.697
275.0 – 300.0 0.938 0.846 0.728
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5.5 Survival Probability as a Function of Branch Radius
Next we consider the sensitivity of the branch-impact survival probability to the radius of
the branch. In these calculations, the distance of the impact point from the trunk varied
randomly between 25 cm and 300 cm and the height of the tree varied randomly between
30 cm and 30 m (approximately 100 ft). The radius of the branch was constrained to
relatively narrow ranges of 0.5 cm. The calculated average impact survivability
probabilities are plotted in Figure 8 and the values are given in Table 9. 

The survival probability decreases rapidly as the branch radius increases (Figure 8 and
Table 9). This is a consequence of the fact that the elastic restoring force of the branch is
proportional to the area moment of inertia of the branch which in turn is proportional to
the fourth power of the radius of the branch. As before, the higher the elastic modulus of
the wood is, the lower the probability of survival.

5.6 Survival Probability as a Function of Branch Height
Finally, we consider the sensitivity of the average impact-survival probability to the
height of the branch. In these calculations, the distance of impact point from the trunk
varied randomly between 25 cm and 300 cm and the radius of the branch varied
randomly between 0.5 cm and 10 cm, and the height of the branch was constrained to
relatively narrow ranges (usually 100 cm). The calculated average impact survivability
probabilities are plotted in Figure 9 and the values are given in Table 10.
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Figure 8. Average Survival Probability, Pimpact, for the Current Dart Design as a
Function of Branch Radius, r

Table 9. Average Survival Probability, Pimpact, as for the Current Dart Design as a
Function of Branch Radius, r

Pimpact

r Range (cm) Ceiba White Oak Kaneelhart
0.5 – 1.0 0.998 ± 0.002 0.991 ± 0.002 0.979 ± 0.002
1.0 – 1.5 0.982 0.963 0.936
1.5 – 2.0 0.958 0.929 0.887
2.0 – 2.5 0.933 0.892 0.830
2.5 – 3.0 0.906 0.850 0.768
3.0 – 3.5 0.876 0.805 0.703
3.5 – 4.0 0.844 0.757 0.638
4.0 – 4.5 0.809 0.708 0.569
4.5 – 5.0 0.773 0.659 0.505
5.0 – 5.5 0.737 0.607 0.449
5.5 – 6.0 0.698 0.555 0.399
6.0 – 6.5 0.662 0.508 0.355
6.5 – 7.0 0.623 0.464 0.317
7.0 – 7.5 0.583 0.424 0.285
7.5 – 8.0 0.545 0.388 0.259
8.0 – 8.5 0.509 0.356 0.235
8.5 – 9.0 0.476 0.326 0.216
9.0 – 9.5 0.444 0.299 0.199
9.5 – 10.0 0.415 0.277 0.184
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Figure 9. Average Survival Probability, Pimpact, for the Current Dart Design as a
Function of Branch Height, h

What is interesting here is that the survival probability drops off sharply for branches
higher than 3 m, but beyond that there is only a very gradual decline (Figure 9 and Table
10). What this reflects is that below a certain distance the time between the branch impact
and the ground impact is too small for the spin imparted to the dart to result in a
significant angle of attack. Above a certain distance, however, there is sufficient time for
this excessive pitch to manifest itself.

5.7 Estimate of the Overall Branch-Impact Survival Probability
In general, the single-branch impact probability at a site will depend on the species and
growth history of the tree stand. However, it is interesting to note that if the branch length
varies randomly between 25 cm and 300 cm, the branch radius varies randomly between
0.5 cm and 10 cm, and the branch height varies randomly between 30 cm and 30 m, the
average single-branch impact survival probability Pimpact ranges from 0.527 to 0.718 as
the elastic modulus decreases (Table 11). It is therefore tempting to conclude that as a
general rule of thumb, the probability of surviving the impact with a tree branch in a
generic tree is on the order of 0.6. However, this number should be used with some
caution.
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Table 10. Average Survival Probability, Pimpact, for the Current Dart Design as a
Function of Branch Height, h

Pimpact

h Range (cm) Ceiba White Oak Kaneelhart
30.0 – 100.0 0.964 ± 0.002 0.943 ± 0.002 0.909 ± 0.002

100.0 – 200.0 0.895 0.838 0.755
200.0 – 300.0 0.855 0.779 0.681
300.0 – 400.0 0.828 0.741 0.642
400.0 – 500.0 0.807 0.714 0.614
500.0 – 600.0 0.790 0.693 0.593
600.0 – 700.0 0.775 0.677 0.576
700.0 – 800.0 0.762 0.662 0.560
800.0 – 900.0 0.750 0.650 0.549
900.0 – 1000.0 0.739 0.640 0.539

1000.0 – 1100.0 0.730 0.631 0.530
1100.0 – 1200.0 0.722 0.622 0.521
1200.0 – 1300.0 0.714 0.614 0.513
1300.0 – 1400.0 0.706 0.606 0.507
1400.0 – 1500.0 0.699 0.599 0.501
1500.0 – 1600.0 0.694 0.593 0.494
1600.0 – 1700.0 0.689 0.587 0.488
1700.0 – 1800.0 0.683 0.581 0.483
1800.0 – 1900.0 0.679 0.576 0.478
1900.0 – 2000.0 0.673 0.571 0.473
2000.0 – 2100.0 0.668 0.565 0.470
2100.0 – 2200.0 0.663 0.561 0.466
2200.0 – 2300.0 0.660 0.557 0.464
2300.0 – 2400.0 0.656 0.553 0.461
2400.0 – 2500.0 0.651 0.549 0.458
2500.0 – 2600.0 0.648 0.546 0.455
2600.0 – 2700.0 0.647 0.544 0.452
2700.0 – 2800.0 0.641 0.540 0.449
2800.0 – 2900.0 0.638 0.537 0.446
2900.0 – 3000.0 0.635 0.534 0.444

5.8 Estimate of the Overall Site Survival Probability
To estimate the probability of a dart surviving deployment at a forested site, we need the
probability of impacting a tree canopy, Pcanopy, and the probability of impacting a branch,
Pbranch. Pcanopy can be determined from the projected area of the canopy. For an estimate,
we can use the conservative value Pcanopy = 1, i.e., dense forest.
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Table 11. Average Branch-Impact Survival Probability, Pimpact, Over All Impact
Conditions and Estimated Survival Probability, Psurvival, for the Current Dart Design

Ceiba White Oak Kaneelhart
Pimpact 0.718 ± 0.002 0.621 ± 0.002 0.527 ± 0.002

Psurvival 0.859 0.811 0.764

As noted in section 2, the probability of impacting a branch, Pbranch, is difficult to
determine. It depends on the species of tree, the maturity of the tree, the growing
conditions for the region (climate and soil), and other factors. For example, Pbranch has
been determined be approximately 0.2 for some walnut trees, but can be much larger,
especially for other species of trees. Pbranch can be estimated using remote sensing or
using tree growth models (section 3). For an estimate, we use the conservative value
Pbranch = 0.5, i.e., dense branches.

Then using Eq. (1),

( ) ( ) 80.06.015.01111 =−××−≈−−= impactbranchcanopy PPPP .

Therefore, under fairly conservative assumptions, approximately 80% of the darts
deployed at a heavily forested site may reach the ground with a sufficiently small angle
of attack to be able to embed there. Estimates of the overall survival probabilities for each
of the woods are given in Table 11.
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6 Summary and Conclusions
In this report we presented a methodology for computing the probability that the sensor
dart for the “Near Real-Time Site Characterization for Assured HDBT Defeat” Grand-
Challenge LDRD project will survive deployment over a forested region. The total
probability can be decomposed into three approximately independent probabilities. Two
of these account for the forest coverage and the branch density and the third accounts for
the physics of an impact between the dart and a tree branch.

The probability that a dart survives an impact with a tree branch was determined from the
effect of the impact on the dart trajectory. If a dart impacted the ground with an angle of
attack less than a threshold angle, the dart was assumed to survive the branch impact;
otherwise, it was assumed to not survive the impact. We developed a computer code for
calculating the dart-tree impact survival probability based on this criterion. In the code,
we modeled the sensor dart as a rigid body and a tree branch as a statically determinant,
perfectly elastic beam with a cylindrical cross section. During an impact, the dart causes
the branch to bend and the resulting elastic restoring force generates an impulse on the
dart that changes the dart center of mass velocity and the angular velocity around the
center of mass. The main approximations in the methodology were that the dart was
treated as a non-deformable rigid body and aerodynamic forces were neglected. The rigid
body approximation is reasonable because impacts capable of deforming or damaging the
projectile are expected to induce a pitch and yaw to the rigid body that would result in
destruction at ground impact irrespective of damage done during the branch impact. The
neglect of aerodynamic forces is also considered acceptable given that any impact with a
tree will occur close to the ground. We considered only single branch impacts.

We used a Monte Carlo scheme to calculate the probability of a sensor dart surviving an
impact with a branch. Ranges of heights, radii, and lengths were defined for branches
representative of a particular kind of tree. A specific branch height, radius, and impact
point (less than or equal to the branch length) were chosen at random from within these
ranges. The trajectory of the sensor dart was then calculated. If the dart experienced a
rotation that exceeded a threshold angle of attack it was assumed to not survive the
impact; otherwise it was assumed to have survived. This process was repeated on the
order of 50,000 to 100,000 times with new, randomly chosen impact parameters for each
calculation. The results of these calculations were then used to define a probability
distribution in terms of the branch height, radius, and length.

The probabilities of encountering a tree and of impacting a tree branch depend on the
nature of the forest and the trees themselves (species, maturity, growing conditions, etc.)
and will be site-specific. We reviewed some methods for computing these probabilities in
this report.

We conducted studies with two dart designs. One was an early prototype design in which
the terrabrakes were closed during the branch impact. The second was the current dart
design with the terrabrakes open during the branch impact.

As a rule of thumb, we observed that for reasonably generic trees and for a threshold
angle of attack of 5°, which is conservative for dart survival based on actual drop tests of
sensor darts, the probability of the dart reaching the ground with a sufficiently small
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angle of attack to be able to embed there after impact with a tree branch is on the order of
30% for the prototype dart design and 60% for the current dart design, although these
values should be treated with some caution.
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Appendix: Listing of a Fortran 95 Computer Code for
Computing Pimpact

This appendix gives a listing of a Fortran 95 computer code for computing impactP based

on a Monte Carlo analysis of the impact on a single branch of a tree. As presented here,
the code computes a single survival probability based on randomly sampling different
branch heights, radii, and lengths within a prescribed range of values. The numerical
methodology used in this case is the one described in section 2, with minor but
unimportant differences as documented in the code below.

The Monte Carlo parameters to be varied in this code are defined using parameter
statements in the main program. The first three define bins over which the branch height,
branch length (or equivalently distance of the impact from the trunk), and the branch
radius are defined. These bins are only used for collecting statistics and do not affect the
distribution of the parameters. The number of calculations per bin, Nc, determines how
many points are randomly selected from each bin. All bins are sampled Nc times over the
course of a single calculation.

The range of values to be sampled for the branch height, impact point (branch length),
and radius are given by the three parameters following the “number of calculations per
bin” parameter. All values are in centimeters. The remaining parameters define the
moment of inertia and mass of the dart, the maximum survival pitch at ground impact for
the dart, and the Young’s modulus for the tree.

This particular version of the code generates a simple average survival probability.
However, the code has been written to collect data by bins in order to define a statistical
probability distribution if desired. While the bin data is collected in this version, the
probability distribution itself is not printed out.
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program survival_prob
!
! Program to compute the probability of survival of the impact of a sensor dart
! with a single tree branch.
!
! John K. Prentice
! Consultant, Sci-Tac, Inc.
! 7 January 2004
!

USE dart_dynamics_m
!

implicit none
!

integer, parameter :: LONGreal=selected_real_kind(15,90)
!
! Number of branch heights per impact point
!

integer, parameter :: max_height_bins = 3
!
! Number of impact bins along the length of each branch
!

integer, parameter :: max_bins_along_tree = 50
!
! Number of branch radius bins
!

integer, parameter :: max_branch_radius_bins = 4
!
! Number of calculations per bin
!

integer, parameter :: number_calcs_per_bin = 100
!
! Branch height extremes (1 foot to 10 feet)
!

real (kind=LONGreal), parameter :: hmin = 30.48_LONGreal, hmax = 304.8_LONGreal
!
! Branch impact point extremes (1 foot to 2 feet)
!

real (kind=LONGreal), parameter :: lmin = 30.48_LONGreal, lmax = 60.96_LONGreal
!
! Branch radius extremes (1/2 inch to 2 inches)
!

real (kind=LONGreal), parameter :: rmin = 1.27_LONGreal, rmax = 5.08_LONGreal
!
! Principal moments of inertia for the dart in dynes/cm^2. Value is from
! Rob Gilchrist, SNL
!

real (kind=LONGreal), dimension(3), parameter :: &
I_b = (/2.29e6_LONGreal, 2.29e6_LONGreal, 1.64e5_LONGreal/)

!
! Mass for the dart in gm. Value is from Rob Gilchrist, SNL
!

real (kind=LONGreal), parameter :: mass = 13607.8
!
! Maximum survivable pitch for the dart in degrees (Paul Yarrington has suggested
! this value is give or take 5 degrees)
!

real (kind=LONGreal), parameter :: max_survival_pitch = 5.0_LONGreal

!
! Young's modulus for the tree. For oak it is 1.7e11 dynes/cm^2 and for teak it
! is 1.3e11 dynes/cm^2
!

real (kind=LONGreal), parameter :: E = 1.3e11_LONGreal
!
!
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!========== internal variables ============
!
!

real (kind=LONGreal), dimension(3) :: branch_origin, branch_end, r_cm
real (kind=LONGreal) :: branch_radius, dr, dz, dl, r0, z0, l0, rnow, znow, lnow, &

random, impact_length, ypnt, total_survival_probability
real (kind=LONGreal), dimension(max_height_bins) :: branch_height
logical, dimension(max_height_bins) :: height_survival_array
integer, dimension(max_bins_along_tree, max_branch_radius_bins,max_height_bins) ::&

survival_matrix
integer :: number_of_calculations, total_number_of_survivals, i, j, k, n

!
! compute the branch impact point, branch radius, and height increments
!

dr = (rmax-rmin) / real(max_branch_radius_bins-1, LONGreal)
dl = (lmax-lmin) / real(max_bins_along_tree-1, LONGreal)
dz = (hmax-hmin) / real(max_height_bins-1,LONGreal)

!
! position the tree so that the trunk is along the positive z axis and branch is
! along the positive x axis. Because of assumptions made in the tree_dynamics
! routine, this will require that the initial position of the dart be in the
! x>0 and y<0 quarter-space.
!

branch_origin(:) = (/0.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/)
branch_end(:) = (/0.0_LONGreal, -lmax, 0.0_LONGreal/)

!
! loop over all the various bins and compute the survivability
!

survival_matrix(:,:,:) = 0
!

do i = 1, max_bins_along_tree
lnow = lmin + dl * real(i-1, LONGreal)
l0 = lnow - 0.5_LONGreal * dl

!
do j = 1, max_branch_radius_bins

rnow = rmin + dr * real(j-1, LONGreal)
r0 = rnow - 0.5_LONGreal * dr

!
do n = 1, number_calcs_per_bin

!
! determine the branch height, radius, and the point of impact along its length
!

call random_number (random)
branch_radius = max(0.1, r0 + random * dr)
call random_number (random)
impact_length = max(6.99_LONGreal, l0 + random * dl)
do k = 1, max_height_bins

znow = hmin + dz * real(k-1, LONGreal)
z0 = max(1.1_LONGreal*branch_radius, znow - 0.5_LONGreal * dz)
call random_number (random)
branch_height(k) = max(2.0_LONGreal*branch_radius, z0+random * dz)

end do
!
! determine the center of mass coordinate for the dart for this iteration
!

call random_number (random)
r_cm(1) = 0.99_LONGreal * 6.99_LONGreal * random
r_cm(2) = -impact_length
r_cm(3) = 23.88_LONGreal

!
! compute the survivability of the dart for this impact point and all heights
!

call dart_dynamics (branch_origin, branch_end, branch_radius, E, I_b, &
r_cm, mass, max_survival_pitch, branch_height, &
height_survival_array)

do k = 1, max_height_bins
if (height_survival_array(k)) then

survival_matrix(i,j,k) = survival_matrix(i,j,k) +1
end if

end do
!
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end do
end do

end do
!
! compute statistics
!

number_of_calculations=max_height_bins*max_bins_along_tree*max_branch_radius_bins*&
number_calcs_per_bin

total_number_of_survivals = 0
do i = 1, max_bins_along_tree

do j = 1, max_branch_radius_bins
do k = 1, max_height_bins

total_number_of_survivals = total_number_of_survivals + &
survival_matrix(i,j,k)

end do
end do

end do
total_survival_probability = real(total_number_of_survivals, LONGreal) / &

real(number_of_calculations, LONGreal)
!
! output statistics
!

print *,"Total number of calculations = ", number_of_calculations
print *,"Total number of survivals = " , total_number_of_survivals
print *,"Total survival probability = " , total_survival_probability

end program survival_prob

module dart_dynamics_m
!
! Calculate the motion of the sensor dart during the impact event
!
! John K. Prentice
! Consultant. Sci-Tac, Inc.
! 5 January 2004
!

USE dart_axes_m
USE tree_dynamics_m

implicit none

private
public :: dart_dynamics

contains
subroutine dart_dynamics (branch_origin, branch_end, branch_radius, E, I_b, r_cm, &

mass, max_survival_pitch, branch_height, survival)
!

integer, parameter :: LONGreal=selected_real_kind(15,90)
!
!=========== formal variables =============
!

real (kind=LONGreal), dimension(:), intent(in) :: branch_height
logical, dimension(:), intent(out) :: survival
real (kind=LONGreal), intent(in) :: branch_radius, E, max_survival_pitch, mass
real (kind=LONGreal), dimension(3), intent(in) :: branch_origin, branch_end, I_b
real (kind=LONGreal), dimension(3), intent(inout) :: r_cm

!
!========== internal variables ============
!

real (kind=LONGreal), dimension(3) :: torque, omega, omega_dot, f_cm, r_d0, &
r_d1, x_d_b, y_d_b, z_d_b, velocity, x_d, &
y_d, z_d, omega_inertial, omega_n, omega_nm1

real (kind=LONGreal), dimension(3,3) :: alpha
real (kind=LONGreal) :: t, dt, xmin, xmax, ymin, ymax, zmin, zmax, pitch
integer :: i, j, k, number_of_branch_heights
real (kind=LONGreal), dimension(:), allocatable :: final_pitch
integer, parameter :: number_impact_time_steps = 250
real (kind=LONGreal), parameter :: SMALL = epsilon(1.0_LONGreal)
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!
! determine the number of branch heights to evaluate and initialze some arrays
!

number_of_branch_heights = size(branch_height)
allocate (final_pitch(number_of_branch_heights))
final_pitch(:) = -1.0_LONGreal

!
! initialize velocity to 75 m/s and angular velocity to zero and the pitch to zero
!

velocity(:) = (/0.0_LONGreal, 0.0_LONGreal, -7500.0_LONGreal/)
omega_inertial(:) = 0.0_LONGreal
x_d = (/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/)
y_d = (/0.0_LONGreal, -1.0_LONGreal, 0.0_LONGreal/)
z_d = (/0.0_LONGreal, 0.0_LONGreal, -1.0_LONGreal/)
pitch = 0.0_LONGreal

!
! compute the time step during the time any part of the dart is in the vacinity of
! the tree branch
!

dt = (58.42_LONGreal + 2.0_LONGreal*branch_radius)/abs(velocity(3))/ &
real(number_impact_time_steps,LONGreal)

t = 0.0_LONGreal
omega_n(:)=0.0_LONGreal
omega_nm1(:)=0.0_LONGreal

!
! define the initial direction cosines for the body coordinate system relative to
! the intertial system. also define the z extremes for the dart in the interial
! system
!

alpha(1,1)=dot_product(x_d,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(1,2)=dot_product(x_d,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(1,3)=dot_product(x_d,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))
alpha(2,1)=dot_product(y_d,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(2,2)=dot_product(y_d,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(2,3)=dot_product(y_d,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))
alpha(3,1)=dot_product(z_d,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(3,2)=dot_product(z_d,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(3,3)=dot_product(z_d,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))

!
r_d0 = matmul (transpose(alpha),(/0.0_LONGreal,0.0_LONGreal,-34.54_LONGreal/))+r_cm
r_d1 = matmul (transpose(alpha), (/0.0_LONGreal,0.0_LONGreal,23.88_LONGreal/))+r_cm
zmin = min(r_d0(3),r_d1(3))
zmax = max(r_d0(3),r_d1(3))

!
! loop over time steps and integrate equations of motion accounting for impact
! with the tree branch
!
all: do
!
! determine the center of mass force and the torque in the body coordinate system
! due to the tree branch impact
!

call tree_dynamics (branch_origin, branch_end, branch_radius, E, alpha, f_cm, &
r_cm, torque)

!
! transform the angular velocity from the inertial coordinate system to the body
! coordinate system
!

omega = matmul (alpha, omega_inertial)
!
! compute the new angular velocity in the body coordinate system using Euler's
! equations
!

omega_dot(1) = (torque(1) - omega(2) * omega(3) * (I_b(2) - I_b(3))) / I_b(1)
omega_dot(2) = (torque(2) - omega(1) * omega(3) * (I_b(3) - I_b(1))) / I_b(2)
omega_dot(3) = (torque(3) - omega(1) * omega(2) * (I_b(1) - I_b(2))) / I_b(3)

!
omega = omega_nm1 + 2*omega_dot*dt
omega_nm1=omega_n
omega_n = omega

!
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! compute the rotation of the dart due to this angular velocity in the body
! coordinate system
!

call dart_axes (omega, dt, x_d_b, y_d_b, z_d_b)
!
! compute the new body axes in the inertial coordinate system
!

x_d = matmul (transpose(alpha), x_d_b)
y_d = matmul (transpose(alpha), y_d_b)
z_d = matmul (transpose(alpha), z_d_b)

!
! renormalize unit vectors
!

x_d = x_d / sqrt(dot_product(x_d,x_d))
y_d = y_d / sqrt(dot_product(y_d,y_d))
z_d = z_d / sqrt(dot_product(z_d,z_d))

!
! compute the new angular velocity in the inertial coordinate system
!

omega_inertial = matmul (transpose(alpha), omega)
!
! transform the cm forces from the body coordinate system to the inertial
! coordinate system
!

f_cm = matmul (transpose(alpha), f_cm)
!
! compute the motion of the center of mass in the inertial coordinate system
!

velocity = velocity + f_cm * dt / mass
r_cm = r_cm + velocity*dt

!
! define the direction cosines for the body coordinate system relative to the
! inertial system
!

alpha(1,1)=dot_product(x_d,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(1,2)=dot_product(x_d,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(1,3)=dot_product(x_d,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))
alpha(2,1)=dot_product(y_d,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(2,2)=dot_product(y_d,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(2,3)=dot_product(y_d,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))
alpha(3,1)=dot_product(z_d,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(3,2)=dot_product(z_d,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(3,3)=dot_product(z_d,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))

!
r_d0 = matmul(transpose(alpha), &

(/0.0_LONGreal,0.0_LONGreal,-34.54_LONGreal/))+r_cm
r_d1 = matmul(transpose(alpha), &

(/0.0_LONGreal,0.0_LONGreal,23.88_LONGreal/))+r_cm
zmin = min(r_d0(3),r_d1(3))
zmax = max(r_d0(3),r_d1(3))

!
! compute the new pitch
!

pitch = acos(dot_product(z_d,(/0.0_LONGreal,0.0_LONGreal,-1.0_LONGreal/)))* &
180.0_LONGreal/3.1415925_LONGreal

!
! advance the time step
!

t = t + dt
!
! if dart has hit the ground for a particular branch height, save the pitch.
! If the dart has hit the ground from the highest branch, stop now. Note, we
! assume the branch_height array gives the heights in ascending order
!

do j = 1, number_of_branch_heights
if (zmin + branch_height(j) <= 0.0_LONGreal) then

if (final_pitch(j) <= -SMALL) then
final_pitch(j) = pitch

end if
if (j == number_of_branch_heights) exit all

end if
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!
! if the pitch is greater than the maximum survivable pitch, stop now
!

if (final_pitch(j) < -SMALL .AND. pitch > max_survival_pitch) then
final_pitch(j:number_of_branch_heights) = pitch
exit all

end if
end do

!
end do all

!
! determine survival
!

where (final_pitch > max_survival_pitch)
survival = .FALSE.

elsewhere
survival = .TRUE.

endwhere
!

deallocate (final_pitch)
!

end subroutine dart_dynamics
!
end module dart_dynamics_m

module eulers_equations_m
!
! Procedure to calculate the angular acceleration and nw angular velocity
! of the sensor dart in the body coordinate system. Input is the torque
! in the body coordinate system, the angular velocity in the body
! coordinate system, and the principal moments of inertia
!
! John K. Prentice
! Consultant. Sci-Tac, Inc.
! 4 January 2004
!

implicit none

private
public :: eulers_equations

contains
subroutine eulers_equations (torque, omega, dt, omega_dot)

!
integer, parameter :: LONGreal=selected_real_kind(15,90)

!
!=========== formal variables =============
!

real (kind=LONGreal), dimension(3), intent(in) :: torque
real (kind=LONGreal), intent(in) :: dt
real (kind=LONGreal), dimension(3), intent(inout) :: omega
real (kind=LONGreal), dimension(3), intent(out) :: omega_dot

!
!========== internal variables ============
!

!
omega_dot(1) = (torque(1) - omega(2) * omega(3) * (I(2) - I(3))) / I(1)
omega_dot(2) = (torque(2) - omega(1) * omega(3) * (I(3) - I(1))) / I(2)
omega_dot(3) = (torque(3) - omega(1) * omega(2) * (I(1) - I(2))) / I(3)

!
end subroutine eulers_equations

!
end module eulers_equations_m

module dart_axes_m
!
! Procedure to calculate the rotation of the unit vectors defining the dart
! relative to the body coordinate system. See page 165 of Goldstein's
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! Classical Mechanics, 2nd edition, for the equation used to perform this
! finite rotation around the angular velocity vector
!
! John K. Prentice
! Consultant. Sci-Tac, Inc.
! 5 January 2004
!

USE cross_product_m

implicit none

private ::
public :: dart_axes

contains
subroutine dart_axes (omega, dt, x_d_b, y_d_b, z_d_b)

!
integer, parameter :: LONGreal=selected_real_kind(15,90)

!
!=========== formal variables =============
!

real (kind=LONGreal), dimension(3), intent(in) :: omega
real (kind=LONGreal), intent(in) :: dt
real (kind=LONGreal), dimension(3), intent(out) :: x_d_b, y_d_b, z_d_b

!
!========== internal variables ============
!

real (kind=LONGreal), dimension(3):: n, r, x_av, y_av, z_av
real (kind=LONGreal) :: domega, phi, omega_mag, i, cos_domega, sin_domega, norm
real (kind=LONGreal), dimension(3,3) :: alpha
real (kind=LONGreal), parameter :: SMALL = epsilon(1.0_LONGreal)

!
omega_mag = sqrt(dot_product(omega,omega))
x_d_b = (/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/)
y_d_b = (/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/)
z_d_b = (/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/)
domega = omega_mag * dt
if (omega_mag > 0.0_LONGreal) then

!
! compute the unit vectors for an angular velocity coordinate system
! in the body coordinate system such that the angular velocity is along
! the positive z axis of this new system
!

z_av(:) = omega(:) / omega_mag
norm = sqrt(dot_product(z_av, z_av))
z_av(:) = z_av(:) / norm
if (abs(z_av(1) - 1.0_LONGreal) <= SMALL) then

x_av(:) = (/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/)
else

x_av(:) = cross_product (z_av,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
end if
norm = sqrt(dot_product(x_av, x_av))
x_av(:) = x_av(:) / norm
y_av(:) = cross_product (z_av, x_av)
norm = sqrt(dot_product(y_av, y_av))
y_av(:) = y_av(:) / norm

!
! compute the rotation matrix between the body coordinate system and the
! angular velocity system
!

alpha(1,1)=dot_product(x_av,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(1,2)=dot_product(x_av,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(1,3)=dot_product(x_av,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))
alpha(2,1)=dot_product(y_av,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(2,2)=dot_product(y_av,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(2,3)=dot_product(y_av,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))
alpha(3,1)=dot_product(z_av,(/1.0_LONGreal, 0.0_LONGreal, 0.0_LONGreal/))
alpha(3,2)=dot_product(z_av,(/0.0_LONGreal, 1.0_LONGreal, 0.0_LONGreal/))
alpha(3,3)=dot_product(z_av,(/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/))

!
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! transform the dart coordinates into the angular velocity system
!

x_d_b = matmul (alpha, x_d_b)
y_d_b = matmul (alpha, y_d_b)
z_d_b = matmul (alpha, z_d_b)

!
! do the rotation of the dart around the angular velocity vector
!

n = (/0.0_LONGreal, 0.0_LONGreal, 1.0_LONGreal/)
cos_domega = cos(domega)
sin_domega = sin(domega)

!
! Note that we are interested here in counterclockwise rotations being
! positive, hence we flip the sign on the cross-product below
!

x_d_b = x_d_b*cos_domega + n*dot_product(n,x_d_b)*(1-cos_domega)- &
cross_product(x_d_b,n)*sin_domega

y_d_b = y_d_b*cos_domega + n*dot_product(n,y_d_b)*(1-cos_domega)- &
cross_product(y_d_b,n)*sin_domega

z_d_b = z_d_b*cos_domega + n*dot_product(n,z_d_b)*(1-cos_domega)- &
cross_product(z_d_b,n)*sin_domega

!
! rotate the new dart axes back into the body coordinate system
!

x_d_b = matmul (transpose(alpha), x_d_b)
y_d_b = matmul (transpose(alpha), y_d_b)
z_d_b = matmul (transpose(alpha), z_d_b)

!
norm = sqrt(dot_product(x_d_b, x_d_b))
x_d_b(:) = x_d_b(:) / norm
norm = sqrt(dot_product(y_d_b, y_d_b))
y_d_b(:) = y_d_b(:) / norm
norm = sqrt(dot_product(x_d_b, x_d_b))
z_d_b(:) = z_d_b(:) / norm

end if
!

end subroutine dart_axes
!
end module dart_axes_m

module dart_radius_m
!
! Compute the radius of the dart as a function of position
! along the axis of symmetry (z=0 is the stern end of the dart).
! Code automatically generated by Maple 9, then converted to F90
! by hand.
!
! znormal is a two-dimensional vector giving the (r,z) coordinates of
! of the surface normal
!
! John K. Prentice
! Consultant. Sci-Tac, Inc.
! 4 January 2004
!

implicit none

private
public :: dart_radius

integer, parameter, private :: LONGreal=selected_real_kind(15,90)
real (kind=LONGreal), parameter, public :: mass = 13607.8
real (kind=LONGreal), dimension(3), parameter, public :: &

I = (/2.29e6_LONGreal, 2.29e6_LONGreal, 1.64e5_LONGreal/)

contains
subroutine dart_radius (z_in, radius, znormal)

!
!=========== formal variables =============
!

real (kind=LONGreal), intent(in) :: z_in
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real (kind=LONGreal), intent(out) :: radius
real (kind=LONGreal), dimension(2), intent(out) :: znormal

!
!========== internal variables ============
!

real (kind=LONGreal) :: z, z_cm, length, rmin, rmax, r0, R, slope, magnitude
!

z_cm = 34.54_LONGreal
z = z_in + z_cm

!
! point is above or below the dart
!

if (z < 0.0_LONGreal .or. 58.42_LONGreal < z) then
radius = -1.0_LONGreal
znormal(:) = 0.0_LONGreal

!
! point is inside lowest cylindrical section
!

else if (z <= 6.64_LONGreal) then
radius = 6.04_LONGreal
znormal(:) = (/1.0_LONGreal, 0.0_LONGreal/)

!
! point is in the fin section (also a cylinder)
!

else if (z <= 16.99_LONGreal) then
radius = 6.99_LONGreal
znormal(:) = (/1.0_LONGreal, 0.0_LONGreal/)

!
! point is in the conical section
!

else if (z <= 32.66_LONGreal) then
length = 13.81_LONGreal
rmin = 3.81_LONGreal
rmax = 6.99_LONGreal
radius = rmax + (rmin - rmax) / length * (z - 16.99_LONGreal)
slope = length/(rmax-rmin)
znormal(:) = (/1.0_LONGreal, slope/)
magnitude = sqrt(dot_product(znormal, znormal))
znormal(:) = znormal(:) / magnitude

!
! point is in the cylindrical region of the nose
!

else if (z <= 46.47_LONGreal) then
radius = 3.81_LONGreal
znormal(:) = (/1.0_LONGreal, 0.0_LONGreal/)

!
! point is in the ogive nose section
!

else
rmax = 3.81_LONGreal
length = 11.95_LONGreal
R = (rmax ** 2 + length ** 2) / (2.0_LONGreal*rmax)
r0 = sqrt(R ** 2 - length ** 2)
radius = sqrt(R ** 2 - (z - 46.47_LONGreal) ** 2) - r0
znormal(1) = r0+radius
znormal(2) = (z - 46.47_LONGreal)
magnitude = sqrt(dot_product(znormal, znormal))
znormal(:) = znormal(:) / magnitude

end if
end subroutine dart_radius

!
end module dart_radius_m

module tree_dynamics_m
!
! Calculate the forces and torques exerted on the sensor dart by the branch
!
! John K. Prentice
! Consultant. Sci-Tac, Inc.
! 3 January 2004
!
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USE dart_radius_m
USE cross_product_m

implicit none

private
public :: tree_dynamics

contains
subroutine tree_dynamics (branch_origin, branch_end, branch_radius, E, alpha, &

f_cm, r_cm, torque)
!

integer, parameter :: LONGreal=selected_real_kind(15,90)
!
!=========== formal variables =============
!

real (kind=LONGreal), intent(in) :: branch_radius, E
real (kind=LONGreal), dimension(3), intent(in) :: branch_origin, branch_end, r_cm
real (kind=LONGreal), dimension(3,3), intent(in) :: alpha
real (kind=LONGreal), dimension(3), intent(out) :: f_cm, torque

!
!========== internal variables ============
!

real (kind=LONGreal), parameter :: SMALL = epsilon(1.0_LONGreal)
real (kind=LONGreal), parameter :: Pi = 3.1415926_LONGreal
integer, parameter :: number_of_sample_points = 10
real (kind=LONGreal), dimension(3) :: b0, b1, vector, normal,f_proj_vector, &

f_vector, deflection_normal, r_vector
real (kind=LONGreal), dimension(2) :: rz_normal
real (kind=LONGreal) :: dz, branch_length, snow, dradius, xpnt, ypnt, zpnt, &

zmin, zmax, deflection, theta, magnitude, x0, x1, y0, y1, &
z0, z1, dmin, dmax, impact_distance, force_mag

real (kind=LONGreal), dimension(number_of_sample_points) :: z_deflect,i_distance, &
xp, yp, zp

real (kind=LONGreal), dimension(3,number_of_sample_points) :: z_proj
integer, dimension(1) :: i_array
integer :: i

!
! An important assumption made in this analysis is that the maximum survivable
! pitch is small, only a few degrees. This means that the axes of the body
! system will always be nearly parallel to those of the inertial system (though
! the z axis of the body system will in general be along the negative z axis
! of the inertial system). The importance of this assumption is that the side
! of the dart where the branch is can be assumed to side that the branch has
! always been on. This is most critical in the determination of whether the
! branch is in contact, we can ignore the possibility that somehow the branch
! has ever been on the far side of the dart.
!
! Associated with this assumption, we assume that the tree truck is in the x<0,
! y<0 quarter-plane in the body coordinate system and that the unbent tree is
! initially in the yz body coordinate plane.
!
!
! Start by transforming the branch beginning and end into the body coordinate
! system
!

b0 = matmul (alpha, branch_origin - r_cm)
b1 = matmul (alpha, branch_end - r_cm)
branch_length = sqrt(dot_product(b0-b1,b0-b1))

!
! If the dart is above or below the branch, zero the force and torque
!

call dart_radius (min(b0(3),b1(3)), zmin, rz_normal)
call dart_radius (max(b0(3),b1(3)), zmax, rz_normal)
if (zmin < 0.0_LONGreal .AND. zmax < 0.0_LONGreal) then

deflection = 0.0_LONGreal
else

!
! Otherwise compute the deflection of the tree and from that the force
! and torque on the sensor dart.
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!
!
! Make sure that the tree trunk is in the x<0, y<0 quadrant. Otherwise
! all bets are off
!
! if (b0(1) > 0.0_LONGreal .OR. b0(2) > 0.0_LONGreal) then
! print *," "
! print *,"Warning!!!!"
! print *,"Tree trunk in the incorrect quadrant, abort"
! print *,"r_cm=",r_cm
! print *,"B0=",branch_origin
! print *,"B1=",branch_end
! print *,"branch radius=",branch_radius
! print *,"b0=",b0
! print *,"b1=",b1
! end if
!
! Case where the branch is at one z level
!

if (abs(b0(3)-b1(3)) <= SMALL) then
x0 = b0(1)
y0 = b0(2)
x1 = b1(1)
y1 = b1(2)
zpnt = b0(3)
call dart_radius (zpnt, dradius, rz_normal)
if (dradius <= 0.0_LONGreal) then

deflection = 0.0_LONGreal
!
! Case where x coordinate of trunk is greater than or equal to -(dart radius)
!

else if (x0 >= -dradius) then
xpnt = dradius * (dradius*x0/(x0**2+y0**2) - &

sqrt((y0**2*(x0**2-dradius**2)+y0**4)/(x0**2+y0**2)**2))
ypnt = -sqrt(dradius**2 - xpnt**2)
impact_distance = sqrt((x0-xpnt)**2+(y0-ypnt)**2)
if (impact_distance >= branch_length) then

deflection = 0.0_LONGreal
else

vector=cross_product (b1-b0,(/xpnt-b0(1),ypnt-b0(2),0.0_LONGreal/))
if (vector(3) <= SMALL) then

deflection = 0.0_LONGreal
else

x1 = x0 + (x1-x0)/branch_length*impact_distance
y1 = y0 + (y1-y0)/branch_length*impact_distance
deflection=sqrt((x1-xpnt)**2+(y1-ypnt)**2)
theta = atan(abs(ypnt/xpnt))
normal(1) = rz_normal(1) * cos(theta)
normal(2) = rz_normal(1) * sin(theta)
normal(3) = -rz_normal(2)
magnitude = sqrt(dot_product(normal, normal))
normal(:) = normal(:) / magnitude
f_vector = (/x1-xpnt, y1-ypnt, 0.0_LONGreal/)
magnitude = sqrt(dot_product(f_vector, f_vector))
f_vector(:) = f_vector(:) / magnitude
f_proj_vector(:) = dot_product(f_vector, normal) * normal
magnitude = sqrt(dot_product(f_proj_vector, f_proj_vector))
f_proj_vector(:) = f_proj_vector(:) / magnitude

end if
end if

else
!
! Case where x coordinate of trunk is less than -(dart radius)
!

xpnt = dradius * (dradius*x0/(x0**2+y0**2) + &
sqrt((y0**2*(x0**2-dradius**2)+y0**4)/(x0**2+y0**2)**2))

ypnt = sqrt(dradius**2 - xpnt**2)
impact_distance = sqrt((x0-xpnt)**2+(y0-ypnt)**2)
if (impact_distance >= branch_length) then

deflection = 0.0_LONGreal
else
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vector=cross_product (b1-b0,(/xpnt-b0(1),ypnt-b0(2),0.0_LONGreal/))
if (vector(3) <= SMALL) then

deflection = 0.0_LONGreal
else

x1 = x0 + (x1-x0)/branch_length*impact_distance
y1 = y0 + (y1-y0)/branch_length*impact_distance
deflection=sqrt((x1-xpnt)**2+(y1-ypnt)**2)
theta = atan(abs(ypnt/xpnt))
normal(1) = rz_normal(1) * cos(theta)
normal(2) = -rz_normal(1) * sin(theta)
normal(3) = -rz_normal(2)
magnitude = sqrt(dot_product(normal, normal))
normal(:) = normal(:) / magnitude
f_vector = (/x1-xpnt, y1-ypnt, 0.0_LONGreal/)
magnitude = sqrt(dot_product(f_vector, f_vector))
f_vector(:) = f_vector(:) / magnitude
f_proj_vector(:) = dot_product(f_vector, normal) * normal
magnitude = sqrt(dot_product(f_proj_vector, f_proj_vector))
f_proj_vector(:) = f_proj_vector(:) / magnitude

end if
end if

endif
else

!
! Case where the branch is not at one z level
!

dz = (b0(3) - b1(3)) / real(number_of_sample_points-1, LONGreal)
x0 = b0(1)
y0 = b0(2)
x1 = b1(1)
y1 = b1(2)
z0 = b0(3)
z1 = b1(3)

!
! Case where x coordinate of trunk is greater than or equal to -(dart radius)
!

if (x0 >= -dradius) then
do i = 1, number_of_sample_points

zpnt = b0(3) + dz * real(i-1,LONGreal)
call dart_radius (zpnt, dradius, rz_normal)
if (dradius <= 0.0_LONGreal) then

z_deflect(i) = 0.0_LONGreal
else

xpnt = dradius * (dradius*x0/(x0**2+y0**2) - &
sqrt((y0**2*(x0**2-dradius**2)+y0**4)/(x0**2+y0**2)**2))

ypnt = -sqrt(dradius**2 - xpnt**2)
impact_distance = sqrt((x0-xpnt)**2+(y0-ypnt)**2+(z0-zpnt)**2)
if (impact_distance >= branch_length) then

z_deflect(i) = 0.0_LONGreal
else

vector = cross_product(b1-b0,(/xpnt-b0(1),ypnt-b0(2), &
0.0_LONGreal/))

if (vector(3) <= SMALL) then
z_deflect(i) = 0.0_LONGreal

else
x1 = x0 + (x1-x0)/branch_length*impact_distance
y1 = y0 + (y1-y0)/branch_length*impact_distance
z1 = z0 + (z1-z0)/branch_length*impact_distance
z_deflect(i)=sqrt((x1-xpnt)**2+(y1-ypnt)**2+ &

(z1-zpnt)**2)
theta = atan(abs(ypnt/xpnt))
normal(1) = rz_normal(1) * cos(theta)
normal(2) = rz_normal(1) * sin(theta)
normal(3) = -rz_normal(2)
magnitude = sqrt(dot_product(normal, normal))
normal(:) = normal(:) / magnitude
f_vector = (/x1-xpnt, y1-ypnt, z1-zpnt/)
magnitude = sqrt(dot_product(f_vector, f_vector))
f_vector(:) = f_vector(:) / magnitude
f_proj_vector(:) = dot_product(f_vector, normal)*normal
magnitude= &
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sqrt(dot_product(f_proj_vector,f_proj_vector))
f_proj_vector(:) = f_proj_vector(:) / magnitude
z_proj(:,i) = f_proj_vector(:)
i_distance(i) = impact_distance
xp(i) = xpnt
yp(i) = ypnt
zp(i) = zpnt

end if
end if

end if
end do

!
! Case where x coordinate of trunk is less than -(dart radius)
!

else
do i = 1, number_of_sample_points

zpnt = b0(3) + dz * real(i-1,LONGreal)
call dart_radius (zpnt, dradius, rz_normal)
if (dradius <= 0.0_LONGreal) then

z_deflect(i) = 0.0_LONGreal
else

xpnt = dradius * (dradius*x0/(x0**2+y0**2) + &
sqrt((y0**2*(x0**2-dradius**2)+y0**4)/(x0**2+y0**2)**2))

ypnt = -sqrt(dradius**2 - xpnt**2)
impact_distance = sqrt((x0-xpnt)**2+(y0-ypnt)**2+(z0-zpnt)**2)
if (impact_distance >= branch_length) then

z_deflect(i) = 0.0_LONGreal
else

vector = cross_product(b1-b0,(/xpnt-b0(1),ypnt-b0(2), &
0.0_LONGreal/))

if (vector(3) <= SMALL) then
z_deflect(i) = 0.0_LONGreal

else
x1 = x0 + (x1-x0)/branch_length*impact_distance
y1 = y0 + (y1-y0)/branch_length*impact_distance
z1 = z0 + (z1-z0)/branch_length*impact_distance
z_deflect(i)=sqrt((x1-xpnt)**2+(y1-ypnt)**2+ &

(z1-zpnt)**2)
theta = atan(abs(ypnt/xpnt))
normal(1) = rz_normal(1) * cos(theta)
normal(2) = -rz_normal(1) * sin(theta)
normal(3) = -rz_normal(2)
magnitude = sqrt(dot_product(normal, normal))
normal(:) = normal(:) / magnitude
f_vector = (/xpnt-x1, ypnt-y1, zpnt-z1/)
magnitude = sqrt(dot_product(f_vector, f_vector))
f_vector(:) = f_vector(:) / magnitude
f_proj_vector(:)=dot_product(f_vector, normal) * normal
magnitude= &

sqrt(dot_product(f_proj_vector,f_proj_vector))
f_proj_vector(:) = f_proj_vector(:) / magnitude
z_proj(:,i) = f_proj_vector(:)
i_distance(i) = impact_distance
xp(i) = xpnt
yp(i) = ypnt
zp(i) = zpnt

end if
end if

end if
end do

end if
!

dmin = minval (z_deflect)
dmax = maxval (z_deflect)
if (max(dmin,dmax) <= 0.0_LONGreal) then

deflection = 0.0_LONGreal
else

i_array = minloc (z_deflect, z_deflect > 0.0_LONGreal)
i = i_array(1)
deflection = z_deflect(i)
normal(:) = z_proj(:,i)
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impact_distance = i_distance(i)
f_proj_vector(:) = z_proj(:,i)
xpnt = xp(i)
ypnt = yp(i)
zpnt = zp(i)

end if
end if

end if
!
! compute force on the dart
!

if (deflection > 0.0_LONGreal) then
force_mag = 3.0_LONGreal*Pi*E*branch_radius**4*deflection/ &

(4.0_LONGreal*impact_distance**3)
f_cm(:) = f_proj_vector(:) * force_mag
r_vector(1) = xpnt
r_vector(2) = ypnt
r_vector(3) = zpnt
torque(:) = cross_product(r_vector, f_cm)

else
f_cm(:) = 0.0_LONGreal
torque(:) = 0.0_LONGreal

end if
!

end subroutine tree_dynamics
!
end module tree_dynamics_m

module cross_product_m
!
! Procedure to calculate vector cross-product
!
! John K. Prentice
! Consultant. Sci-Tac, Inc.
! 5 January 2004
!

implicit none

private ::
public :: cross_product

contains

function cross_product (v1, v2) result(vout)
!

integer, parameter :: LONGreal=selected_real_kind(15,90)
!
!=========== formal variables =============
!

real (kind=LONGreal), dimension(3), intent(in) :: v1, v2
real (kind=LONGreal), dimension(3) :: vout

!
!========== internal variables ============
!

vout(1) = v1(2)*v2(3)-v1(3)*v2(2)
vout(2) = v1(3)*v2(1)-v1(1)*v2(3)
vout(3) = v1(1)*v2(2)-v1(2)*v2(1)

!
end function cross_product

!
end module cross_product_m
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